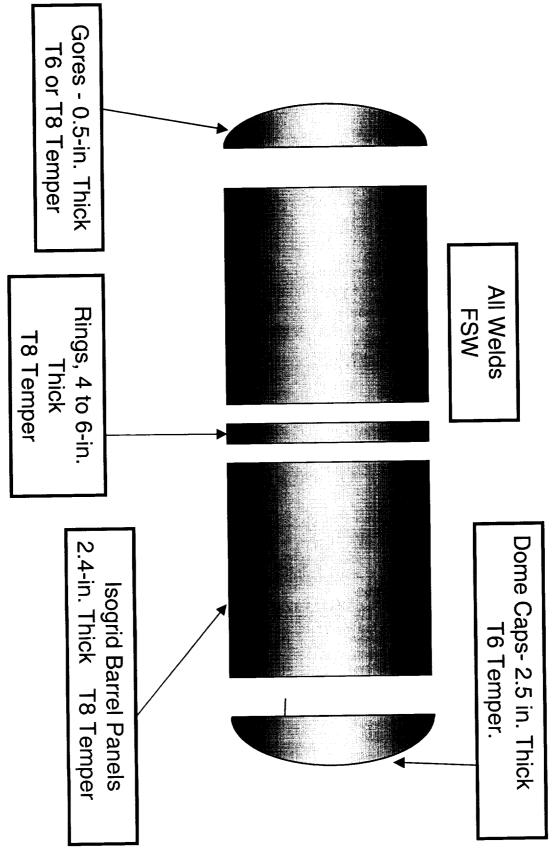
Assessment of Al-Li Alloys for Cryotanks

yd


Dr. Henry W. Babel and Dr. William Bozich

Boeing Al-Li Team Hank Babel, Bill Bozich, Bob Farahmand, Ron De Jesus, K. K. Sankaran, Dave Schwab, Mike Tarkanian

13 June 2002

Tank Elements, Gages, Tempers

Cryogenic Tank Alloys Compared 2219 Al and Al-Li Alloys Selected

Alloy	Usage	Major Characteristics
Stainless	Atlas	Requires pressure stabilization to be weight competitive
Inconel	Small tanks	Same as SS, but alloy is more expensive
Titanium	Small tanks in LH _{2,} never for LOX	Highly flammable, rejected for new astronaut suit elbow in 1989
2219 AI	Many programs	Great reliability, excellent weldability, good properties except strength lowe
2014	Titan and Delta II	Poor short transverse. Banned for use on Delta IV, tough to weld, poor SSC
Al-Li	Shuttle ET	Fusion welding repairs difficult. Lightest weight, most expensive
7000 series	Never used	FT decreases at cryo temperatures. Not fusion weldable, but can be FSW

Relative Component Weights for an Aluminum Tank

FSW	Domes	Rings	Barrels	Component
	2	5	32	No. per tank
TBD	T6	T8	T8	Temper
1628	2000	4,500	19,000	Relative Weights Ib.
6.0	7.4	16.6	69.9	Weight Percent %

Design Controlling Characteristics

FSW	Domes	Rings	Cylinder	Component
Strength	Cyclic Life	Strength and Stiffness	Stability, Cyclic Life, or Strength	Possible Design Controlling Factor
Fty, Klc	da/dN, Kle	Ftu, Fty, E	Ec, da/dN, Kle, Ftu, Fty, Klc	Key Properties

AeroMat 2002 Presentation

Thickness Range of Candidate Alloys

Developmental	Production
C458, C47A, L277, 2098	2219, 2195, 2097, 2297

	Acce	Acceptable Thickness, inch	Thick	(ness	, inch
Alloy	_	2	ယ	4	51
2195					
2098					
2097					
2297					
L277					
C458					
C47A					
2219					

Features of Candidate Alloys

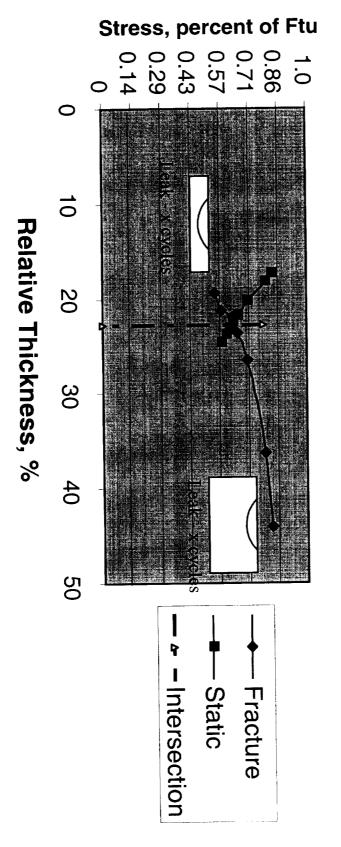
 Development alloy for aircraft Sister alloy to C458 with less Li, weaker, tougher 	C47A
Exceptionally high toughness	
 Developed under AF sponsorship 	C458
Development alloy	
 Similar to 2098 except Li reduced and Mn added 	
 Derivative of 2195 with 0.2% less Li 	L277
Developmental alloy	
 Not designed for FSW or cryogenic use 	1677
 Two AMS specs evolving for same application 	2007
 In production for F-16 	2007
0.5% less Cu than 2195, sister alloy	2030
 In production for 0.25-inch thick 	2008
 Thickness to 1.8 inch verified 	2193
 In production for Shuttle External Tank 	
Key Characteristics	Alloy

=Ø_BOEING*

Plate Compressive Modulus, msi

Alloy 2219	Longitudinal Et Ec 10.5 10.8	udinal Ec 10.8		45° 10.5
2219	10.5	10.8		10.5
L277	11.0	11.3	10.7).7
CAEO	7 7	110	<u>.</u>	-
C458	11.6	11.9		11.1
2090	11.5	11.8		11.0

*Numbers in red are estimates



Cryogenic Enhancement of the Modulus, msi

-423	-320	RT	ň	Temp
12.2	12.2	11.0	Ħ	Longitudinal
12.6	12.5	11.3	Ec	udinal
11.9	11.9	10.7	Ħ	45°
12.2	12.2	11.0	Ec	0

Cyclic Life vs. Pressure

Applied Stress Versus Wall Thickness AI-Li Alloy

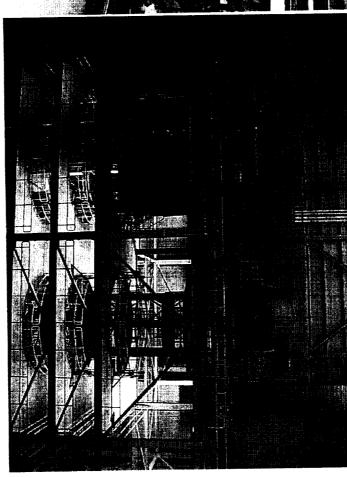
AeroMat 2002 Presentation

Strength Comparison

Typical T8 Temper Values at Ambient Temperature In 45° Direction for Al-LI Alloys

10.5	10	51	65	0.103	2219
11.1	11	62	73	0.0945	C458
11	9	66	73	0.0975	L277
1	9	71	76	0.0975	2195
E, msi	е%	TYS ksi	TUS ksi	Density lb/in ³	Alloy

Joining - Goal is no MRB Actions Possible with FSW of Al-Li


- Preliminary assessment
- Al-Li can be FSW as readily as other alloys
- For joining same alloy, results to date show defect free joints
- FSW dissimilar metals data limited
- Different Al-Li alloys no problem seen or expected
- 2219 to Al-Li 2219 quality joints obtained with a single sided pin tool
- Circumferential FSW is required in addition to the longitudinal FSW already in production

Goal - use FSW for all joints

In Production on Delta Launch Vehicles Delta II/III 2014 AI Delta IV 2219 AI

FSW resulted in outstanding weld quality compared to fusion welds

Some Closing Comments & Opinions

- Al-Li continues to receive attention because of the performance benefits it provides and availability of alloys new alloys that avoid the problems with earlier
- Higher stiffness than 2219
- Higher strength than 2219
- Lower density, 0.103 for 2219 and 0.0945 to 0.975 for Al-Li
- Work on developmental alloys should continue to may be selected for a production program with bring them to production maturity level so they minimum risk
- aside because of fusion welding difficulties FSW will permit re-examining design options set